分享好友 最新动态首页 最新动态分类 切换频道
今年,中国AI大模型产业发展看这些_大模型数据
2024-12-25 12:19

现在的人工智能,已不是「可以用」,而是「非常好用」了。

上个星期,谷歌与李世石一次久违的对话,唤起了人们的回忆

仔细想来,自 2016 年 AlphaGo 在围棋上打败人类起已过去八年。如今人工智能技术的发展却丝毫没有减速,正在给我们创造更大的震撼。

生成式 AI 技术从引领技术爆发的 GPT-4 开始,已经席卷了各个领域。不论是自动写文章,还是生成图片和视频,大模型等技术正随着 Copilot、AI 手机等产品逐步落地。在可见的未来,向我们招手的还有具身智能 —— 通过软硬件结合,机器人正在变得更聪明,即将代替我们的部分劳动。

最近,「新质生产力」理论正成为科技领域的热门话题。新质生产力是以新产业为主导的生产力,它相对传统生产力呈现出颠覆性创新驱动,具有产业链条新、发展质量高等特征,对新旧动能转换发挥着引领性作用。

而 AI 大模型技术的突破,正是驱动科技创新,构建未来产业的强大动力。人工智能带来的科技革命可能会像工业革命、信息革命一样,给每个人的生活带来巨大的改变。

3 月 26 日,博鳌亚洲论坛上,人民网正式发布了《2024 年中国 AI 大模型产业发展报告》,阐述了中国 AI 大模型的发展现状和典型案例,深入探讨国内 AI 大模型产业发展所面临的挑战,同时也对未来趋势进行了展望。

报告下载链接:http://download.people.com.cn/jiankang/nineteen17114578641.pdf

其中有关「下半场」竞争态势、端侧应用爆发等判断,尤为值得关注。

AI 大模型技术落地,将是大浪淘沙

人工智能在持续发展的过程中,已在很多地方实现了落地,包括但不限于语音识别、人脸识别、机器翻译、目标检测、图像生成、辅助驾驶等等方面。很大程度上,新技术已经在帮助千行百业提高生产力了。

随着生成式 AI 技术的发展,智能化升级的范围还将扩大,程度还会更高。作为拥有 AI 完整产业体系的国家,新一代 AI 方案正在中国深入各行各业。

不过,要实现真正的技术变革,我们还面临着一系列挑战。

第一个挑战是算力短缺。随着大模型规模呈现指数级增长,算法越来越依赖高性能 AI 芯片。有市场研究公司报告称,去年仅 Meta 和微软两家公司就从英伟达处分别购买了 15 万块 H100 GPU,各花去约 45 亿美元,但这还远远不够:基于 H100 的服务器的交付周期已经长达 52 周

在国内,高性能 AI 芯片市场还因为进出口限制和技术瓶颈的双重影响,大模型产业发展正在受到算力层面的制约。

第二个挑战是大模型架构的局限性。如今的 AI 预训练大模型均采用自注意力机制的 Transformer 神经网络结构,它在自然语言处理等领域具有诸多优势,包括可实现完全并行计算、捕捉长距离依赖关系、模块化设计、处理不定长序列、结构扩展以及预训练效果好等等

但随着人们的不断开发与扩展,transformer 固有的算力消耗资源大、内存占用多、泛化能力有局限性等问题也逐渐显现。

就连 Transformer 论文《Attention Is All You Need》的七位原作者在最近 GTC 大会的圆桌讨论上也表示,这个世界需要比 Transformer 更好的东西,才能将我们带到新的性能高原。

对数据的运用,是制约大模型落地的另一个重要因素。*对于从头开始训练的大模型,语料数据的质量很大程度上会影响模型能力。大模型对数据供给的要求极高,比如 OpenAI 在训练 GPT-4 时,就在大约 13T token 的数据上进行了训练,其中包括基于文本和基于代码的数据,以及来自 ScaleAI 和内部的一些微调数据。

相对而言,国内的 AI 大模型数据面临着数据类型不全面、信息可信度不高等问题。整体来看,可用于大模型训练的中文数据库相比英文数据,体量严重不足。

最后,我们还在期待更多爆款应用。ChatGPT 自发布以来迅速成为史上增速最快消费级应用,提供支持的微软也将大模型技术引入到了 Office、Teams 甚至 Windows 操作系统中。而在国内科技公司的生态中,至今仍没有出现类似的爆款级应用,原因可能在于尚未找到商业化思路,技术、个性化程度仍未满足用户需求。

可以说,在生成式 AI「百模大战」后,算法创新优化、生态构建和应用落地等任务,为正在构建 AI 技术体系的公司提出了更高的要求。只有少数脱颖而出者,才会进入未来的大规模应用阶段。

新方向已出现:走向端侧,端云结合

毫无疑问,在 AI 新技术上,国内科技公司一直在坚持投入,已经收获了不小的成果。

通过大规模数据训练,数百亿甚至千亿参数量级的通用大模型能够学习捕捉复杂规律和特征,对前所未见的数据做出预测。通用大模型能理解学习多种任务,得益于大规模预训练和微调范式,可完成多领域任务,并具备多模态的理解和生成能力。

以百度文心一言、阿里通义千问、科大讯飞星火、腾讯混元大模型等为代表,一批高参数体量的云端大语言模型充分利用了算力和海量训练数据,已经能提供语言理解、知识问答、数学推理、代码生成等能力。

它们一边面向 C 端个人用户提供智能问答、文本摘要与生成、图片生成、视频生成等功能。另一方面面向 B 端企业用户,正在改变企业的传统业务模式,正在提供智能化营销、客服、自动会议记录、文本翻译、预算管理等前所未有的能力。

基于通用大模型基础,我们看到了面向特定行业和领域的专用大模型,已开始进入金融、政务、医疗等领域。

而在端侧方向上,接连出现了 AI 手机和 AI PC 两个新概念,大模型展现了广泛的应用前景。

基于端侧深度优化的「小体量」预训练模型能力,个人设备的使用方式和习惯正在被重塑。AI 已经能提供文档搜索、智能识屏、图像创作、生活助手、出行助手等个性化服务。随着大模型的极致优化,人们甚至在展望智能穿戴设备上的大模型应用。

端侧大模型一方面可以为人们带来更加个性化的 AI 能力,对用户意图进行更深度、精准、细腻的理解,提供更加个性化的复杂场景服务。同时也能够保证数据位于端侧,保护了人们的隐私信息。

另一方面,一部分云端计算任务转移给终端处理,还会大幅降低算力成本;一些复杂的工作和在端侧处理后的内容,也可以通过网络交由云端千亿级,甚至万亿级的 AI 大模型来进行处理,这就是「端云协同的 AI」。

端云协同进化的大模型体系有望解决当前大模型范式面临的一些问题与挑战

  • 在计算资源方面,端云协同能够充分利用云端、终端的碎片化计算资源,并与通信以及存储资源进行联合优化

  • 在模型架构方面,端云大小体量不同的模型以及聚合的新模式,同时获得了大模型的涌现能力与小模型的功耗优势

  • 在数据方面,快速发展的大、小模型和各类应用正在催生规范化、行业细分的数据治理体系

  • 在应用方面,端侧大模型在理解用户意图后,可以高效调用其他大模型、服务和硬件能力,实现极高的可用性。

这或许会是新一轮人工智能的变革方向所在。

AI 手机落地引领趋势

正是因为端侧 AI 大模型和「端云协同」的前景,率先把大模型落地到消费级领域的,是各大手机厂商。

去年末到今年初,国内众多厂商陆续推出了新一代旗舰手机,生成式 AI 能力不约而同地成为了发布的重点。

这些手机厂商提出的「AI 手机」有的发力意图理解,通过端侧 AI 技术,以人为中心,利用个性化信息、传感器能力大幅提升手机的情境感知水平,带来各种高效的智慧服务。

有的通过平台化 AI,以端侧 + 云侧模型连接各类服务,实现了高效的推理决策。而利用大模型「智能体」将复杂任务分解,并在每个子步骤实现自主决策,手机不仅对人发出的指令和需求实现了深度理解,还可以进一步简化操作,自主实现多种复杂目标。

在这其中,vivo 在大模型端侧化、矩阵化的表现尤为突出,在新发布的报告中作为企业案例获得了详细介绍。

去年 11 月,vivo 正式发布了自研 AI 大模型「蓝心 BlueLM」,并搭载于新一代旗舰手机 vivo X100 系列上率先落地。

这是行业内首个在手机端运行的开源自研大模型,其覆盖十亿、百亿、千亿三个参数量级,共计五款模型。基于蓝心大模型能力,vivo 在端侧提供了蓝心小 V 和蓝心千询两款应用,并为手机提供了全局智能辅助功能。

vivo 的技术创新,已经让很多人享受到大模型带来的便利。官方给到我们一组数字:蓝心大模型目前已经覆盖了超过 2000 万用户,实现了 2761 万次高质量问答、生成了 1757 万张画,写了 649 万份报告,「AI 修图」功能还消除了 85 万个路人。

在这背后既有端侧大模型能力和优化带来的优势,还有 vivo 大模型矩阵化的功劳:不同参数量级的大模型可以通过多种部署方式应用于不同场景,在满足用户手机端侧体验的同时,优化了推理性能以及端侧部署时占用的内存和功耗。

其中,蓝心大模型的 1B 和 7B 版本可在手机端运行,既实现了面向端侧硬件能力的优化,又提供了良好的 AI 生成能力,使得一些应用可以全天候正常运行。

70B 版本的蓝心大模型则是面向云端服务的主力模型,提供角色扮演、知识问答等能力,既有智能涌现,也能兼顾成本和性能。面向复杂任务,vivo 也通过 1300 亿和 1750 亿两款大模型,依靠更丰富的知识量,带来了更加专业的智能体验。

随着参数量的提升,蓝心大模型逐渐具备了文本总结、语言理解、文本创作、知识问答、角色扮演、复杂逻辑推理、复杂任务编排等能力。结合新一代手机的 AI 算力,蓝心大模型实现了端侧部署与端云结合的能力。

博鳌亚洲论坛期间,vivo 介绍了蓝心大模型的最新落地进展:目前手机用户们获得的 AI 能力已升级到「端侧 7B」+「云侧 70B」的组合,充分利用到了端云结合的优势。

vivo 在人工智能技术的四大维度 —— 数据、人力、算法、算力上都做到了领先:自 2017 年起,vivo 组建了人工智能研究团队,并建设知识图谱积累数据,多年来已在顶级期刊发表了一系列高水平论文。vivo 的研究成果正在不断转化为工程应用,目前其自研大模型已位居大语言模型综合性考试评测集 C-Eval 中文榜单前列。

C-Eval 排行榜:https://cevalbenchmark.com/static/leaderboard_zh.html

通过对手机生态和用户使用特征的深度思考,端侧智能助理通过大模型的加持获得了前所未有的能力,已不仅仅是「能够与人自然对话」,而是在大量用户学习、生活、工作等场景上都带来了颠覆性的体验。

2024 年,AI 大模型应用落地爆发

AI 手机还有很大的发展空间。随着 AI 算法迭代优化、芯片性能提升和应用场景拓展,新生产力将日益普及,满足人们不断增长的多元化需求。

AI 大模型将深刻影响人们与设备交互的方式,今年或许就将发生质变。

在博鳌论坛上人们表示,2024 年随着从政府到开发者各个层面的支持、用户需求的激增,再加上科技公司投入力度的推动,大模型将进入快速发展的阶段。如果具体到手机上,结合 AI 大模型端侧化、矩阵化的技术演进,大模型技术的落地将颠覆一系列我们眼中一成不变的功能。

我们可以期待未来手中的设备,能够呈现出完全不同的形态。

*## 如何学习大模型 AI

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段(10天:初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么
  • 大模型是怎样获得「智能」的
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天:高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天:模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天:商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【】

123?spm=1001.2014.3001.5501)这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【】

最新文章
成人网站免费入口如何找到?探索隐藏入口的安全与隐患!
对于一些****来说,提供免费的访问入口是一种吸引更多用户的方式。通过提供免费入口,网站能够获得更多的流量,并有可能通过广告、会员制度等方式盈利。免费入口往往会限制部分功能或内容的访问,只有付费用户才能完全享受网站的服务,但这
MVP榜单更新:库里跃升至第五,KD与浓眉并列第十,约基奇继续领跑
随着火箭成功战胜勇士,NBA杯赛的四分之一决赛渐渐落下帷幕,东部和西部的老鹰、雄鹿、雷霆以及火箭四支队伍已经挺进到了半决赛的赛场。而在这个激动人心的时刻,美媒对当前的MVP榜单进行了刷新,为球迷们揭示了诸多令人关注的变化。随着各
免费的亚马逊关键词工具有哪些?怎么选词?
在写亚马逊标题和进行产品推广的时候,需要选择合适的关键词,所以对于运营同学来说,可以通过一些工具来选择更加合适的关键词,今天介绍几个免费的亚马逊关键词工具!1、Google关键词规划师Google广告关键词规划师可用于构建Google AdWord
沈阳性价比之王,企业互联网飞跃的低价网站优化推广服务
沈阳低价网站优化推广服务,性价比高,助力企业快速提升网络曝光,实现互联网快速发展。沈阳低成本网站优化推广的优势沈阳低成本网站优化推广的执行步骤沈阳低成本网站优化推广的关键要点在泛滥的当下,企业若想在激烈的市场竞争中独树一帜
外贸独立站运行规则是什么
本文目录fp独立站是什么外贸独立站用什么收款个人怎么做好外贸独立站外贸soho如何建独立站做跨境独立站可以在乡下做吗fp独立站也就是外贸型销售网站。fp独立站算是术语,通常银行人员用的比较多。其实很简单,意思就是给网站或者app接入
如何使用手机轻松翻越网络屏障-访问国外网站
网络是一个自由、开放的平台,人们可以在上面获取和分享各种信息。然而,由于各种原因,一些国外网站可能无法被访问,尤其是存在网络限制的情况下。在大多数情况下,使用非法的手段翻越网络屏障并访问国外网站是不被允许的,而且可能会导致
如何使用AI智能软件制作PPT? ai自动生成ppt工具推荐
在数字化和智能化的今天,AI技术已经渗透到我们工作和生活的各个方面。其中,AI智能软件在PPT制作方面的应用,不仅极大地提高了制作效率,而且能够产生更具创意和个性化的展示内容。那么,如何使用AI智能软件制作PPT呢?本文将为你介绍AI工
公众号行业排行榜
排行公众号预估粉丝头条平均阅读次条平均阅读日发文数操作dushetv1801432100000+370904iiirenwu177408796548435322DSliupiaopiao158435686436暂无1the3design93357100000+暂无1xineuro323772100000+11576soyoung1111397456100000+暂无5mist
SEO与SEM的区别及应用场景解析
在数字营销的领域,SEO(搜索引擎优化)和SEM(搜索引擎营销)是两种常见且重要的推广方式。它们的目标都是提升网站的曝光度和流量,但实现的方式不同。SEO主要依赖于优化网站内容和结构,以提高搜索引擎自然排名,而SEM则通过付费广告方式
SEO网站排名优化价格—如何以合理的成本提升网站流量和转化率
企业对SEO的目标设定和优化的范围也是价格差异的重要原因。例如,有些企业只希望通过SEO提升某个特定关键词的排名,而有些企业则希望通过综合SEO提升整个网站的流量和曝光度。这种目标的差异直接决定了SEO服务的工作量和费用。如果需要全面
相关文章
推荐文章
发表评论
0评