🚅座右铭:行百里者,半于九十。
🏆代码获取方式:
CSDN Matlab武动乾坤—代码获取方式
更多Matlab信号处理仿真内容点击👇
①Matlab信号处理(进阶版)
⛳️关注CSDN Matlab武动乾坤,更多资源等你来!!
1 瑞利信道原理
瑞利信道模型是无线通信信道最重要、最基础的的仿真模型。无线信道中的平坦衰落信道基本上都是在瑞利信道模型的基础上修改而成,比如应用同样广泛的莱斯信道就可以通过在瑞利信道的基础上简单的添加直流分量实现,而频率选择性衰落信道基本上都是几种平坦衰落信道叠加的结果。(怎么理解?)
小尺度平坦衰落信道中,由于移动体处于不断的运动状态,导致接收端接收到的是来自不同路径的多径信号。移动台的速率将会导致每条多径分量具有不同的多普勒频移,同时假设移动台接收的信号的入射角度在[ 0, 2π]间均匀分布。这样就产生了具有特定环境下的多普勒功率谱密度特性。Clarke信道模型描述的小尺度平坦衰落信道中,移动台接收信号具有基于散射方式的场强统计特性,这正符合市区移动通信环境不存在直射路径的特点,其包络统计特性服从瑞利分布,因此又称为瑞利衰落信道模型。一般情况下,在 瑞利衰落的状态下,多普勒功率谱具有Jakes 功率谱密度函数,即U型谱。
许多信道建模和仿真方法的研究,均以Clarke信道模型的统计特性作为性能评估的标准,但Clarke参考模型是一种理想模型,物理不可实现。Clarke参考模型是由多个正弦波相加,但要求个数非常大,理想统计特性在N为无穷大时取得。从对模型的仿真结果来看,一般需要在大于50个正弦波的条件下,才能取得较好的仿真效果。
2 瑞利信道仿真的实现方法
Clarke参考模型的主要实现方法有正弦波叠加法和成型滤波法。两种方法各有其优缺点,正弦波叠加法由于计算复杂度低,在工业界得到广泛应用。
正弦波叠加法
正弦波叠加法是利用确定性过程来模拟随机过程。根据概率论,多个不同频率的正弦波叠加,幅度统计是服从高斯分布的。如果实部和虚部均用多个不同频率的正弦波叠加,则实部虚部均分别服从高斯分布。又根据瑞利分布的定义,两个高斯变量的平方和的根服从瑞利分布,因此包络服从瑞利分布。
在仿真性能评估的角度来说,完全理想的情况下,各径的同相和正交分量应该完全不相关,两者合成的总自相关曲线有固定的变化趋势。这些也是评估正弦波叠加法实现算法性能的主要指标。
正弦波叠加法易于实现,占用资源少,但是产生的多普勒功率谱是由多个离散频率点上的冲激构成的,并且相关性能不够理想。正弦波叠加法有很多种产生各正弦波相位、幅度参数的方法,比如等面积法,等距离法,蒙特卡罗法等,在这里不详细展开。
Jakes提出了基于正弦波叠加法的Jakes仿真模型。Jakes仿真模型是一种确定模型,产生的信号非广义平稳且不具各态历经性,其二阶统计特性与Clarke参考模型也相差较大。Jakes仿真模型虽然对Clarke参考模型实现了简化,降低了复杂度,提高了仿真效率,但却引入了广义非平稳性。其主要原因就在于Jakes对模型中的随机相移进行了确定化,同时造成了随机相移之间存在相关性。在仿真效率方面,所需的低频振荡器(即正弦波发生器)的数目由N减小到M=(N/2一l)/2,运算量大大减少。
clear all, clear all;
M=8;
N=4M+2;
fd=926;%an=0的fd
% fd=input(‘an=0的fd:测试值926:’);%an=0时的最大多普勒频移
wd=2pi*fd;
Ns=50000;
% Ns=50000;
Ts=1e-6;%样本点数和采样频率
t=[0:Ns-1]Ts;
%f=[-Ns/2:Ns/2-1]/(NsTs*fd);
t_0=0;
%t=t’;
%ph=unifrnd (-pi,pi,1,M+1);%-pi~pi均匀分布随机变量
%set beita_n,an,bn,wn
uc=zeros(1,Ns);
us=zeros(1,Ns);
ruu=zeros(1,Ns);
rucuc=zeros(1,Ns);
for n=1:M+1
if(n==M+1)
beita_n(M+1)=pi/4;
an(M+1)=sqrt(2)cos(beita_n(M+1));
bn(M+1)=sqrt(2)sin(beita_n(M+1));
wn(M+1)=wd;
else
beita_n(n)=pin/M;
an(n)=2cos(beita_n(n));
bn(n)=2sin(beita_n(n));
wn(n)=wdcos(2pin/N);
end
temp1=2/sqrt(N)(an(n)cos(wn(n)t));
uc=uc+temp1;%实部
temp2=2/sqrt(N)(bn(n)cos(wn(n)t));
us=us+temp2;%虚部
temp3=4/N(2cos(wn(n)t)+cos(wdt));
ruu=ruu+temp3;%自相关
temp4=4/N(an(n).^2/2cos(wn(n)*t));
rucuc=rucuc+temp4;
end
1 matlab版本
2014a
2 参考文献
[1]尹向兵,吴良超.基于周期果蝇算法的无线传感网覆盖优化[J].赤峰学院学报(自然科学版). 2017,33(16)
[2]王欣阳,王瑞阳,魏云冰.基于算术优化算法的低压配电网故障区段定位方法[J].电子科技.
3 备注
简介此部分摘自互联网,仅供参考,若侵权,联系删除
🍅 仿真咨询
1 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化
2 机器学习和深度学习方面
卷积神经网络(CNN)、LSTM、支持向量机(SVM)、最小二乘支持向量机(LSSVM)、极限学习机(ELM)、核极限学习机(KELM)、BP、RBF、宽度学习、DBN、RF、RBF、DELM、XGBOOST、TCN实现风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
3 图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
4 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、车辆协同无人机路径规划、天线线性阵列分布优化、车间布局优化
5 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配
6 无线传感器定位及布局方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化
7 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化
8 电力系统方面
微电网优化、无功优化、配电网重构、储能配置
9 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长