转自 中国科协之声
乔红
除了输入的训练数据集质量,AI系统的可靠性还体现在输出结果的可执行性上。只有AI的输出结果与人类价值观相符,才能确保AI模型的能力和行为与人类意图保持一致。仅依靠数据和算法并不足以实现人机对齐,需要将人类的价值观和伦理道德转化为强化学习奖励函数。这意味着在设计奖励机制时,不仅要考虑任务的效率、效益和效果,还需要考虑行为是否符合人类的伦理标准。例如,在设计一个自动驾驶系统的奖励函数时,除了行驶速度和安全性,还应加入对交通规则的遵守、对行人和其他车辆的礼让等伦理因素的权重,从而引导模型学习到更加符合人类期望的行为。
当前AI系统的合规性、安全性和伦理问题愈发突出,建立一个类似宪法上位法的AI监督模型框架尤为必要。其主要目的是通过制定明确的标准和规范,确保所有AI系统在开发和使用过程中遵循既定的原则,从而减少AI在制度没有确定的情况下被过度使用所带来的风险。例如,在设计阶段,必须考虑系统在对人的监控、对价值观的引导,以及在军事领域的过度使用等方面可能带来的社会影响;在训练阶段,所使用的数据和算法须确保不会侵犯用户隐私或造成不公平的结果;在部署阶段,还需要持续监控AI系统运行状态,及时发现并修复任何潜在的风险和漏洞。
基于海量参数和训练数据的大规模预训练模型能够有效提高人机交互和推理能力,增强可完成任务的多样性和丰富性。目前Scaling Law依然有效,这种规模效应不仅体现在语言模型上,也在图像处理、语音识别等多个领域中得到了验证。一方面参数量与数据量增长为模型提供了更为丰富的训练素材,使其能够捕捉到更为细致和多样的特征,不断提升了模型的表达能力和泛化能力。另一方面算法创新也将开创新的scaling范式,例如GPT-o1引入了思维链协议和自洽性思维链等多项创新技术,更关注推理时间和参数规模两条曲线的协同作用,将复杂问题拆解为简单的步骤,代表了推理scaling的新范式。
使用大模型、生成式技术等来增强和加速科学研究中的提出假说、试验设计、数据分析等阶段的效率,提高研究效率和准确性。科学家们可以利用AI技术进行实时的试验监测和调整,快速反馈试验结果,动态优化试验设计和假设。AI for Science技术还推动了科学进步和研究范式升级,牵引传统的线性研究范式向更加快速迭代和自适应的方向发展。例如在机器人结构设计中,AI模型能够模拟不同任务和环境需求下机器人的运动控制特性,从而协助用户快速生成最合理的构型方案。这种灵活且高效的研究方式,大大提升了发现新科学规律的可能性,从而加速科学研究的进程。
传统大模型可以协助机器人处理决策、任务拆解和常识理解等慢通道反应任务,但不适合做强实时性和高稳定性的机器人规划与控制快通道反应任务。具身智能小脑模型作为机器人运动的重要调节中枢,通过多模型投票等集成学习方法,结合机器人本体结构与环境特性选择合理的模型控制算法,确保机器人在理解自身本体约束的前提下,完成高动态、高频、鲁棒的规划控制动作,以增强其应对不确定性和突发状况的能力。其核心在于解决软件算法与物理空间结合的问题,以及单体高性能和能力通用性之间的矛盾,从而使智能机器人系统更加满足现实世界的精细操作与实时控制需求。
实体人工智能系统是将具身智能赋能于物理世界中的实体对象,其核心理念是赋予物理实体以智能,使其能够自主感知环境、做出决策并执行相应任务。例如智能家居中的扫地机器人不仅能够通过识别房间的布局和家具的位置实现动态规划清扫路径,还可以记住敏感物品的存放位置和主人的作息习惯,从而使传统设备能够突破其原有的功能限制,实现更高水平的智能化操作。人形机器人是实体人工智能系统的终极表现形态,它不仅具备多模态感知和理解能力,能够与人类自然互动,还可以在复杂环境中自主决策和行动,并有望在未来应用到更多复杂的工作场景中。
谢谢大家!
供稿:中国国际科技交流中心、中国科学技术出版社、中国科协国际合作部
编辑:陈蔼静