分享好友 最新动态首页 最新动态分类 切换频道
自研芯片公司:英伟达在前,其余公司能否望其项背?
2024-12-28 17:35

在追求构建更强大人工智能(AI)模型的当下,一般的通用芯片已难以支撑,行业对人工智能芯片的需求显著增长。在AI芯片领域,有英伟达(NVIDIA)、超威半导体(AMD)、英特尔(Intel)等耳熟能详的大公司持续深耕,也有Groq、SambaNova Systems、Cerebras Systems等后起之秀雨后春笋般涌出。AI势头正盛,未来AI芯片领域中,谁能跻身前列?雷峰网根据行业现有报告,梳理目前顶尖的AI硬件公司,回顾其发展动态。

主要的芯片领导者

1.英伟达NVIDIA

受益于生成式AI市场的爆发,英伟达成了数据中心人工智能芯片领域霸主——据统计,英伟达目前在数据中心AI市场拥有98%的市场份额,相比之下,AMD仅有1.2%的市场份额,英特尔则只有不到1%,英伟达的领导者地位毋庸置疑。

1990年代以来,英伟达一直在为游戏领域生产图形处理单元(GPU),PlayStation3和Xbox都使用英伟达的视频图形阵列。同时,英伟达也生产Volta、XavierTesla等人工智能芯片,其芯片组旨在解决各行业的业务问题。例如,Xavier是自动驾驶解决方案的基础,Volta则是针对数据中心;而DGX™A100H100是英伟达成功的旗舰AI芯片,专为数据中心的AI训练和推理而设计。目前为止,英伟达发布了H200、B200GB200芯片,HGX服务器(如结合了8个此类芯片的HGX H200和HGX B200);将更多芯片组合成大型丛集的NVL系列和GB200 SuperPod。

不过,需指出的是,由于英伟达的AI芯片价格高昂,且存在供应不足的问题,部分客户也希望选择其他替代产品。

而在云端GPU上,英伟达也几乎处于垄断地位,大多数云端厂商只将英伟达GPU作为云端GPU。英伟达也推出了DGX Cloud产品,直接向企业提供云端的GPU基础架构。

近年来,国内厂商华为海思、景嘉微、海光信息、寒武纪、芯原股份、龙芯中科等,也在加速GPU领域的研发。

2、超威半导体(AMD)

AMD是一家拥有CPU、GPU和AI加速器产品的芯片制造商。在ChatGPT引发生成式AI热潮后,人们对英伟达AI硬件的需求迅速增加,导致其采购更难。在2023年开始,有初创公司、研究机构、企业和科技巨头开始采用AMD硬件。

2023年底,AMD发布了新一代AI/HPC专用加速器Instinct MI300系列,包括纯GPU设计的MI300X、CPU+GPU融合设计的MI300A,全面对标英伟达H100系列。由于AI算力需求激增,MI300销量增长迅速,在2024年二季度的收入超过10亿美元,成为AMD有史以来增长速度最快的产品。

据悉,AMD将发布MI350系列来取代MI300,并与英伟达的H200竞争。此外,Instinct MI325X预计于2024年第四季度发货,与H200的大规模交付仅相差一个季度——AMD表示,在运行Llama 3.1 和Mixtral 等大型AI模型时,MI325X的推理性能会比现有市场领先者H200高出20%至40%。

AMD也与HuggingFace等机器学习公司合作,使数据科学家能更有效地使用他们的硬件。不过,开发硬件的同时,软件生态系统也至关重要,因硬件效能很大程度上依赖软件优化。例如,AMD和英伟达在H100和MI300基准测试上存在公开分歧,分歧焦点是基准测试中使用的包和浮点数。根据最新的基准测试,对于70B LLM的推理,MI300似乎更好、或与H100相当。

3.英特尔Intel

英特尔是CPU市场最大的厂商,拥有悠久的半导体开发历史。2017年,英特尔成为全球第一家销售额突破10亿美元大关的AI芯片公司。

英特尔的至强CPU适用于各种工作,包括数据中心的处理,对其商业成功产生了影响。在2024年9月底,英特尔发布了新一代至强6性能核处理器,代号Granite Ridge,专为满足AI、数据分析、科学计算等计算密集型业务的需求而设计。据官方数据,与第五代至强相比,至强6处理器拥有多达2倍的每路核心数,平均单核性能提升高达1.2倍,平均每瓦性能提升高达1.6倍。

此外,Gaudi3是英特尔最新的AI加速器处理器,英特尔称其比英伟达的H100 GPU更快、更有效率,在训练大语言模型方面比H100快1.7倍,并且,Gaudi3的成本预算远比H100低。不过,自2024年4月公开发布以来,目前对Gaudi3性能的基准测试仍较有限。

生产AI芯片的公共云提供商

4.AWS

AWS生产用于模型训练的Tranium芯片和用于推理的Inferentia芯片。在2024年12月,AWS宣布Trainium2正式可用,其性能比第一代产品提升4倍,能在极短的时间内训练基础模型和大语言模型,且能源效率提升多达2倍。AWS将推出一款由数十万颗自研Trainium芯片组成的巨型人工智能超级计算机。苹果也会成为其最新的芯片客户之一。

雷峰网(公众号:雷峰网)还了解到,在全球云计算服务市场中,AWS独占近半壁江山。根据2022年的统计,AWS占据全球IaaS市场份额的40%。不过,AWS是在谷歌之后才开始构建自己的芯片。

5.谷歌云平台

TPU是谷歌推出的神经网络专用芯片,为优化自身的TensorFlow机器学习框架而打造。其Google Cloud TPU为翻译、照片、搜索、助手和Gmail 等产品提供支持,也可以通过Google Cloud使用。

谷歌在2016年发布了TPU,在2024年推出第六代TPU:Trillium。谷歌表示,Trillium TPU每一晶片峰值计算效能提升了4.7 倍,是“相当惊人的表现”,且Trillium TPU可以更快速地训练下一代基础模型,以较短的延迟时间与较低成本提供模型服务。谷歌亦强调这一产品的永续特质:与TPU v5e相比,Trillium TPU的能源效率高出67%。

除此之外,Edge TPU是谷歌Alphabet的另一款加速器芯片,它适用于多种设备类型的原型设计和生产设备,比一分硬币还小,专为智能手机、平板电脑和物联网设备等边缘设备而设计。

6.阿里巴巴

阿里巴巴于2019年发布了首款AI芯片“含光800”,这款云端AI芯片是当时全球最高性能的AI推理芯片,主要应用于视觉场景。据悉,其基于12nm工艺与自研架构,集成了170亿晶体管,性能峰值算力达820 TOPS。在业界标准的ResNet-50测试中,推理性能达到78563 IPS,比当时业界最好的AI芯片性能高出四倍;能效比达500 IPS/W,是第二名的3.3倍。

7.IBM

IBM于2022年发布其最新的深度学习芯片——人工智能单元(AIU)。IBM表示,这是其第一个完整的系统单芯片,旨在比通用CPU更快、更有效率地运行和训练深度学习模型。IBM正在考虑使用这些芯片为其生成式AI平台watson.x提供支持。

AIU基于“IBM Telum处理器”构建,该处理器为IBM Z大型机服务器的AI处理功能提供支持。Telum处理器推出时的突出用例包括欺诈检测等。IBM还展示了合并计算和内存可以提高效率,并在North Pole处理器原型中得到演示。

领先的AI芯片初创公司

一些AI芯片行业的初创公司尽管才刚刚成立,却已经筹集了数百万美元,未来我们可能会更频繁听到它们的名字。

8.Groq

Groq由谷歌前员工创立。其自研的LPU(语言处理器),旨在以前所未有的速度加速AI模型。在2024年,Groq凭借自研的硬件加速器LPU,达成了500个token/s的神级推理速度,秒杀ChatGPT。行内人士认为,Groq代表了可用速度的一步变化,为LLM提供了新的用例。Groq创始人表示,Groq的存在是为了消除“贫富差距”,帮助AI社区中的每个人蓬勃发展。

Groq专注于LLM推理,并发布了Llama-270B的基准测试。2024年第一季度,该公司表示,有7万名开发人员在其云平台上注册并构建了1.9万个新应用程序。而早在2022年3月1日,Groq收购了Maxeler,后者为金融服务提供高性能计算(HPC)解决方案。Groq已经筹集了约3.5亿美元,并生产了GroqChip™处理器、GroqCard™加速器等。

9.SambaNova Systems

SambaNova Systems成立于2017年,旨在为大量生成式AI工作负载开发高性能、高精度硬件软件系统。该公司开发了全球首款面向万亿参数规模AI模型的AI芯片系统——基于可重构数据流单元 (RDU) 的AI芯片SN40L。据悉,该芯片专门为运行企业应用程序的大型语言模型而构建,其设计目标是能承载ChatGPT高级版本两倍容量以上的大模型,可为一个拥有5万亿个参数的模型提供服务。对比英伟达的H100芯片,SN40L不仅推理性能达到了H100的3.1倍,在训练性能也达到了H100的2倍,而总拥有成本更仅有其1/10。

不仅如此,SambaNova Systems还将其平台出租给企业。SambaNova的人工智能平台即服务方式,使其系统更易于采用,并鼓励硬件重复使用以实现循环经济。该公司也已筹集了超过11亿美元的资金。

10.Cerebras Systems

Cerebras Systems成立于2015年,推动了芯片设计领域的一场革命——将整片晶圆制成一个巨大的芯片。其于2019年推出的WSE-1,具有1.2万亿个晶体管和40万个处理核心,可同时专注于AI和HPC(高性能计算机群)的工作负载。

而在2021年,Cerebras推出专为超级计算机任务打造的Wafer Scale Engine 2(WSE-2),为当时全球最大AI芯片。与其之前推出的WSE-1相比,WSE-2在面积上没有变化,但拥有创纪录的2.6万亿个晶体管以及85万个AI优化核,其芯片的所有性能特征,均比一代增加了一倍以上。2024年3月,Cerebras发布拥有4万亿个晶体管和90万个AI核心的WSE-3,将用于训练一些业界最大的人工智能模型,理论上能训练多达24万亿个参数的AI模型。WSE-3采用台积电先进的5纳米工艺技术,将其现有最快AI芯片的世界纪录提升了一倍。

雷峰网了解到,Cerebras的系统还与阿斯利康和葛兰素史克等制药公司及研究实验室合作,如利用生物数据集训练大规模的语言模型,能显著缩短AI模型训练时间、加快研发进程,对新药的发现和开发具有重要意义。

11.Etched

他们选择为了效率而牺牲了灵活性——将变压器架构刻录到芯片中。

Etched宣布推出一款针对Transformer架构专用的ASIC芯片“Sohu”。据称,8个Sohu芯片每秒可以生成500,000个token,远超过配备8张英伟达最新的B200 GPU加速卡的服务器约10倍,其AI性能达到英伟达H100的20倍——这也意味着Sohu芯片将可以大幅降低现有AI数据中心的采购成本和安装成本。

不过,目前,这些都是基于团队的内部测量,许多问题还没有得到解答:模型过时时如何处置?用户是否需要购买新芯片,还是旧芯片可以用下一个模型重新配置?他们如何运行基准测试,使用了哪种量化和模型?此外,考虑到每隔几个月就会发布新模型,将模型刻录到芯片中的做法是否可持续,这一答案也令人期待。

12.Tenstorrent

Tenstorrent生产高性能AI芯片Wormhole芯片,可扩展且成本效益高;还有供研究人员使用的台式机和由Wormhole芯片驱动的服务器(例如Tenstorrent Galaxy)。该公司还为其解决方案提供软件栈。据悉,Tenstorrent于2024年12月从包括杰夫·贝佐斯(Jeff Bezos)在内的投资者那里筹集了7亿美元,估值超过26亿美元。

即将到来的AI硬件生产商有哪些?

还有一些引人注目的AI硬件解决方案,但由于它们是市场新手,目前对其有效性的基准测试有限。

苹果作为一家主要的芯片设计商,也在自研数据中心AI芯片——项目名为ACDC。据称,该公司正在与台积电合作设计和生产这些人工智能芯片。这些服务器芯片的主要焦点可能是AI推理,其中涉及经过训练的机器学习模型从新数据中得出结论。而就在2024年12月底,有消息称苹果正与博通合作开发AI芯片,是其首个专为人工智能设计的服务器芯片,或为行业带来更深刻的变革。

Meta也努力想在生成式AI领域赶上竞争对手。在英特尔宣布其最新AI加速器硬件的第二天,Meta公布其芯片研发的最新成果:下一代 MTIA(Meta Training and Inference Accelerator),MTIA是专为Meta AI工作负载而设计的定制芯片系列。据悉,下一代MTIA基于台积电5nm技术,据称与MTIAv1相比性能提高了3倍。MTIA目前供Meta内部使用,但未来如果Meta推出基于LLaMa的企业生成AI产品,这些芯片可以为此类产品提供支持。

此外,微软于2023年11月推出Maia AI加速器。还有总部位于韩国的初创公司Rebellions在2024年筹集了1.24亿美元,专注于LLM推理。

还有一些AI芯片生产商 ,如Graphcore,一家成立于2016年的英国公司,已发布其旗舰AI芯片IPU-POD256,能提供64 petaFLOPS的AI计算。该公司已获得了约7亿美元的融资,与DDN、Pure Storage和Vast Data等数据存储公司建立了战略合作伙伴关系,其AI芯片服务于牛津大学OMI量化金融研究院、布里斯托大学和加州大学伯克利分校等研究机构。不过,该公司的长期生存能力面临风险,因其每年亏损约2亿美元,2024年10月,软银(Softbank)以多于6亿美元的价格收购了它。

而成立于2012年、专注于边缘AI的Mythic,走的是一条非常规的路线——模拟计算架构,旨在提供节能的边缘AI计算。它推出了模拟计算引擎(ACE)M1076 AMP、MM1076 key card等产品,并已筹集了约1.65亿美元的资金。不过,Mythic在2023年3月的融资中解雇了大部分员工并重组了业务。

同时,OpenAI也在筹集资金打造自己的AI硬件。


最新文章
机器学习day3(西瓜书决策树+0-1小项目)
前置学习: 默认你已经理解了机器学习一里的留出法等对准确性提高的各种通用的前置方法 引用部分为西瓜书原文(这句话的不算) 决策树 顾名思义,决策树是基于树结构来进行决策的,这恰是人类在面临决 策问
青海/山西/广东智慧应急平台三标1.1亿,移动/电信/浩鲸云中标
预算金额:2485.06万元采购需求:本次项目建设内容分三个部分:一是黄南州“智慧应急”平台建设,包括平台功能设计、专题应用设计、平台支撑系统设计。二是黄南州应急指挥中心建设。包括大屏显示系统、扩音系统、供电及空调新风系统、会议
谷歌SEO简介,介绍搜索引擎优化之路
随着互联网的飞速发展,搜索引擎已经成为人们获取信息、了解世界的重要途径。在众多搜索引擎中,谷歌凭借其强大的技术实力和庞大的用户群体,成为了全球最具影响力的搜索引擎之一。今天,就让我们一起来揭秘谷歌SEO(搜索引擎)之道,探索
新站二手房热门小区榜单:这些小区的升值潜力可不一般!
给大家带来新站12月第2周(12.9-12.15)热搜TOP10小区,快来看看你家房子现在价格多少,是涨还是跌?据房天下研究院搜索排名显示,12月第2周(12.9-12.15)新站的热搜小区依旧保持了不错的关注热度。热搜小区榜单中排名第一的是家天下,目
《新媒体营销与运营 (慕课版)》 教案 (19)微信篇(8)微信营销案例--秋叶PPT.docx
《《新媒体营销与运营 (慕课版)》 教案 (19)微信篇(8)微信营销案例--秋叶PPT.docx》由会员分享,可在线阅读,更多相关《《新媒体营销与运营 (慕课版)》 教案 (19)微信篇(8)微信营销案例--秋叶PPT.docx(5页珍藏版)》请在第壹
推广获客,洛阳营销推广获客
在当今竞争激烈的市场环境中,企业如何通过有效的推广策略获得新客户,成为品牌发展的关键。本文将深入探讨推广获客的多种策略和方法,帮助企业在市场中站稳脚跟。市场分析与目标定位推广获客的第一步是进行市场分析,了解目标客户群体的需
如何进行谷歌推广?详细步骤一网打尽!
在进行谷歌推广之前,首先需要进行关键词的筛选。关键词的选择要全面、准确,与你的产品或服务相关,且有搜索量。可以使用 Google Adwords 的 Keyword Planner 工具去筛选关键词,该工具可以帮助你了解每个关键词的搜索量、竞争强度等信息
潜力最好的十只股票,市场分析与展望,潜力股盘点,市场最佳十只股票分析与展望
摘要:本文分析了市场潜力最好的十只股票,通过深入研究市场趋势、行业前景、公司基本面等因素,对这十只股票进行了全面评估。文章还展望了未来市场的发展趋势,为投资者提供了有价值的参考。这十只股票在各自的领域内具有优势,并有望在未
济南公司网站排名优化,策略与实践,济南做网站公司排名
济南公司网站排名优化策略与实践,旨在提升企业在搜索引擎中的排名,增加品牌曝光度和流量。通过关键词研究、网站结构优化、内容优化、外部链接建设等手段,提高网站质量和用户体验,从而吸引更多潜在客户。选择专业的济南做网站公司排名,
掌如科技服务有限公司
掌如科技服务有限公司
相关文章
推荐文章
发表评论
0评