【干货】数据集网站汇总!

   日期:2024-11-05     作者:caijiyuan       评论:0    移动:http://oml01z.riyuangf.com/mobile/news/415.html
核心提示:1、企业产生的用户数据 百度指数:http://index.baidu.com/ 阿里指数:https://alizs.taobao.com/ TBI 腾讯浏览指数

1、企业产生的用户数据
百度指数:http://index.baidu.com/
阿里指数:https://alizs.taobao.com/
TBI 腾讯浏览指数:http://tbi.tencent.com/
新浪微博指数:http://data.weibo.com/index

【干货】数据集网站汇总!

2 、数据平台购买数据
数据堂:http://www.datatang.com/about/about-us.html
国云数据市场:http://www.moojnn.com/data-market/
贵阳大数据交易所:http://trade.gbdex.com/trade.web/index.jsp

3 、政府/ 机构公开的数据
中华人民共和国国家统计局数据:http://data.stats.gov.cn/index.htm
世界银行公开数据:http://data.worldbank.org.cn/
联合国数据:http://data.un.org/
纳斯达克:http://www.nasdaq.com/zh

4 、 数据管理咨询公司
麦肯锡:http://www.mckinsey.com.cn/
埃森哲:https://www.accenture.com/cn-zh/
艾瑞咨询:http://www.iresearch.com.cn/

1.Amazon Web Services(AWS)datasets

https://aws.amazon.com/cn/datasets/
Amazon提供了一些大数据集,可以在他们的平台上使用,也可以在本地计算机上使用。您还可以通过EMR使用EC2和Hadoop来分析云中的数据。在亚马逊上流行的数据集包括完整的安然电子邮件数据集,Google Books n-gram,NASA NEX 数据集,百万歌曲数据集等。

2.Google datasets
https://cloud.google.com/bigquery/public-data/
Google 提供了一些数据集作为其 Big Query 工具的一部分。包括 GitHub 公共资料库的数据,Hacker News 的所有故事和评论

3.Youtube labeled Video Dataset
https://research.google.com/youtube8m/

UCI Machine Learning Repository
UCI机器学习库显然是最著名的数据存储库。如果您正在寻找与机器学习存储库相关的数据集,通常是首选的地方。这些数据集包括了各种各样的数据集,从像Iris和泰坦尼克这样的流行数据集到最近的贡献,比如空气质量和GPS轨迹。存储库包含超过350个与域名类似的数据集(分类/回归)。您可以使用这些过滤器来确定您需要的数据集。

2.Kaggle
https://www.kaggle.com/datasets
Kaggle提出了一个平台,人们可以贡献数据集,其他社区成员可以投票并运行内核/脚本。他们总共有超过350个数据集——有超过200个特征数据集。虽然一些最初的数据集通常出现在其他地方,但我在平台上看到了一些有趣的数据集,而不是在其他地方出现。与新的数据集一起,界面的另一个好处是,您可以在相同的界面上看到来自社区成员的脚本和问题。

3.Analytics Vidhya
https://datahack.analyticsvidhya.com/contest/all/
您可以从我们的实践问题和黑客马拉松问题中参与和下载数据集。问题数据集基于真实的行业问题,并且相对较小,因为它们意味着2 - 7天的黑客马拉松。

4.Quandl
https://www.quandl.com/
Quandl 通过起网站、API 或一些工具的直接集成提供了不同来源的财务、经济和替代数据。他们的数据集分为开放和付费。所有开放数据集为免费,但高级数据集需要付费。通过搜索仍然可以在平台上找到优质数据集。例如,来自印度的证券交易所数据是免费的。

5.Past KDD Cups
( http://www.kdd.org/kdd-cup )
KDD Cup 是 ACM Special Interest Group 组织的年度数据挖掘和知识发现竞赛。

1.The MNIST Database
( http://yann.lecun.com/exdb/mnist/ )
最流行的图像识别数据集,使用手写数字。它包括6万个示例和1万个示例的测试集。这通常是第一个进行图像识别的数据集。

2.Chars74K
(http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/ )
这里是下一阶段的进化,如果你已经通过了手写的数字。该数据集包括自然图像中的字符识别。数据集包含74,000个图像,因此数据集的名称。

3.Frontal Face Images
(http://vasc.ri.cmu.edu//idb/html/face/frontal_images/index.html )
如果你已经完成了前两个项目,并且能够识别数字和字符,这是图像识别中的下一个挑战级别——正面人脸图像。这些图像是由CMU & MIT收集的,排列在四个文件夹中。

4.ImageNet
( http://image-net.org/ )
现在是时候构建一些通用的东西了。根据WordNet层次结构组织的图像数据库(目前仅为名词)。层次结构的每个节点都由数百个图像描述。目前,该集合平均每个节点有超过500个图像(而且还在增加)。

1.Spam – Non Spam
(http://www.esp.uem.es/jmgomez/smsspamcorpus/)
区分短信是否为垃圾邮件是一个有趣的问题。你需要构建一个分类器将短信进行分类。

2.Twitter Sentiment Analysis
(http://thinknook.com/twitter-sentiment-analysis-training-corpus-dataset-2012-09-22/)
该数据集包含 1578627 个分类推文,每行被标记为1的积极情绪,0位负面情绪。数据依次基于 Kaggle 比赛和 Nick Sanders 的分析。

3.Movie Review Data
(http://www.cs.cornell.edu/People/pabo/movie-review-data/)
这个网站提供了一系列的电影评论文件,这些文件标注了他们的总体情绪极性(正面或负面)或主观评价(例如,“两个半明星”)和对其主观性地位(主观或客观)或极性的标签。

 
特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。

举报收藏 0打赏 0评论 0
 
更多>同类最新资讯
0相关评论

相关文章
最新文章
推荐文章
推荐图文
最新资讯
点击排行
{
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号