下面内容摘录自《用R探索医药数据科学》专栏文章的部分内容(原文6424字)。
1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)-CSDN博客
1、机器学习和传统统计学
机器学习和传统统计学是数据科学中相辅相成的两个重要分支。机器学习主要侧重于开发和使用算法来识别数据中的模式,并对未知事物进行预测和分类,它强调自动化和处理大规模数据的能力,通过训练模型从数据中进行学习,以实现高效的预测和识别任务。而传统统计学则注重对数据进行深入的推断分析,着重于因果关系的识别和结果的解释,强调理论基础和假设检验,通过严谨的方法论来推导出数据背后的规律和意义。两者在数据科学中都是不可或缺的,它们共同为我们提供了理解和利用数据的工具,既能帮助我们做出准确的预测,又能帮助我们揭示数据中潜在的因果关系。
深入的解释能力和因果推断,提供数据背后的洞见
机器学习是人工智能研究的核心,也是实现人工智能的根本途径。
例如,人工智能的语言识别技术使计算机能够理解和处理人类语言,从而实现人与计算机之间的自然交流。这项技术在语音助手、翻译软件、客服系统等方面得到了广泛应用。例如,苹果的Siri、谷歌助手和亚马逊的Alexa等语音助手已经成为日常生活的一部分,它们能够回答问题、执行命令,甚至进行闲聊,大大提升了用户体验。图像识别技术使计算机能够“看见”并理解视觉信息。通过分析和处理图片或视频中的信息,计算机可以执行如面部识别、物体检测、图像分类等任务。这项技术在安全监控、医疗诊断、自动驾驶等领域发挥了重要作用。人工智能还可以通过分析生物医学数据和化学信息,AI能够发现潜在的药物靶点,预测药物的毒性和有效性,优化药物设计。此外,AI还可以帮助筛选已有药物库,发现新的药物用途,这在疫情等紧急情况下尤其重要。
2、R 与 ChatGPT
R语言也是机器学习的重要工具之一。基础R环境中包含许多机器学习算法,如R的基础包stats中就有线性回归模型、逻辑回归模型、聚类分析和k均值聚类等。此外,越来越多的机器学习R扩展包不断涌现,使得R用户能够方便地使用最新的机器学习技术。
上图,R语言中包的详细指南,介绍了该包的基本功能、安装方法、技术细节、如何获取帮助以及相关资源。包通过提供一个与GPT-3语言模型交互的界面,帮助R开发者生成对话风格的文本,并支持在R环境中进行高效的编码任务。网页还提供了包的作者信息、许可证类型、依赖关系等技术细节,并推荐了获取帮助的多种资源,包括内置帮助系统、包的专用网站、开发者支持以及在线课程和讨论论坛。
通过对人工智能与机器学习的初步认识与分析,我们发现R语言在这两个领域中的重要性不可忽视。从基础的机器学习算法到复杂的模型开发,R为研究人员和开发者提供了强有力的工具。此外,机器学习与传统统计学之间的区分与关联,进一步明确了数据科学的定位。随着技术的不断演进,R语言与ChatGPT等新工具的结合,将进一步推动数据科学的应用普及与深化,为各行各业带来更多创新的可能性。
~~~~~~~~~~
随着数据科学行业的迅速发展,工具的种类和使用方法层出不穷,传统的纸质R语言教材由于篇幅限制和出版审核的繁琐程序,难以及时涵盖最新的技术动态和复杂应用场景。此外,市面上虽有不少R语言免费视频,但大多仅面向初学者,缺乏对如医药等复杂领域的深入探讨。为了解决这些问题,我们在CSDN论坛推出了《用R 探索医药数据科学》专栏。这一专栏将持续更新,不仅是一份教材,更是你掌握最新、最全医药数据科学的得力助手。我们为你精心整理了领域内的深度资料,提供专业且实战导向的内容,帮助你高效提升研究能力,加快医药数据科学领域科研成果的产出。
- 《用R 探索医药数据科学》专栏会持续更新。
- 每篇文章篇幅在5000字 至9000字之间。
- 专栏已更新超过 110篇文章,超60万字。
- 内容涵盖试验统计、预测模型、科研绘图、数据库、机器学习等热点领域。
https://blog.csdn.net/2301_79425796/category_12729892.html?spm=1001.2014.3001.5482
第一章:认识数据科学和R
1章1节:医药数据科学的历程和发展,用R语言探索数据科学(更新20241029)-CSDN博客
1章2节:机器学习、统计学与ChatGPT的概述,与R语言的相关 (更新20241229)_ai、chatgpt和机器学习什么关系-CSDN博客
1章3节:R 语言的产生与发展轨迹(更新2024/08/14)-CSDN博客
1章4节:数据可视化, R 语言的静态绘图和 Shiny 的交互可视化演示(更新20240814)-CSDN博客
第二章:R的安装和数据读取
2章1节:R和RStudio的下载和安装(Windows 和 Mac)-CSDN博客
2章2节:RStudio 四大区应用全解,兼谈 R 的代码规范与相关文件展示_rstudio的console和terminal-CSDN博客
2章3节:RStudio的高效使用技巧,自定义RStudio环境(更新20241023)_rstudio如何使用-CSDN博客
2章4节:用RStudio做项目管理,静态图和动态图的演示,感受ggplot2的魅力-CSDN博客
2章5节:详解R的扩展包管理(从模糊安装到自动更新)及工作目录和工作空间的设置(更新20241030 )-CSDN博客
2章6节:R的数据集读取和利用,如何高效地直接复制黏贴数据到R(20240807 )_r语言 复制数据集-CSDN博客
2章7节:读写RDS,CSV,TXT,Excel,SPSS、SAS、Stata、Minitab等的数据文件(更新20240807)_r语言读取rds文件-CSDN博客
2章8节:一文学会 R Markdown 的文档核心操作,切记文末有R资源的分享_r markdown文件(.rmd)-CSDN博客
2章9节:认识R与数据库连接和网络爬虫,学会在R中使用SQL语言_sql和r语言-CSDN博客
2章10节:用 R 直接下载并分析 NHANES 数据库的数据,文末示例自创便捷下载函数(更新20240807)_nhanes数据分析-CSDN博客
第三章:认识数据
3章1节:数据的基本概念以及 R 中的数据结构、向量与矩阵的创建及运算-CSDN博客
3章2节:继续讲R的数据结构,数组、数据框和列表-CSDN博客
3章3节:R的赋值操作与算术运算_r里面的赋值-CSDN博客
3章4节:R的逻辑运算和矩阵运算-CSDN博客
3章5节:R 语言的循环与遍历函数全解析-CSDN博客
第四章:数据的预处理
4章1节:全面了解 R 中的数据预处理,通过 R 基本函数实施数据查阅_r数据预处理-CSDN博客
4章2节:从排序到分组和筛选,通过 R 的 dplyr 扩展包来操作-CSDN博客
4章3节:处理医学类原始数据的重要技巧,R语言中的宽长数据转换,tidyr包的使用指南-CSDN博客
4章4节:临床数据科学中如何用R来进行缺失值的处理_临床生存分析缺失值r语言-CSDN博客
4章5节:数据科学中的缺失值的处理,删除和填补的选择,K最近邻填补法-CSDN博客
4章6节:R的多重填补法中随机回归填补法的应用,MICE包的实际应用和统计与可视化评估-CSDN博客
4章7节:用R做数据重塑,数据去重和数据的匹配-CSDN博客
4章8节:用R做数据重塑,行列命名和数据类型转换-CSDN博客
4章9节:用R做数据重塑,增加变量和赋值修改,和mutate()函数的复杂用法_r语言如何在数据集中添加变量-CSDN博客
4章10节:用R做数据重塑,变体函数应用详解和可视化的数据预处理介绍-CSDN博客
4章11节:用R做数据重塑,数据的特征缩放和特征可视化-CSDN博客
4章12节:R语言中字符串的处理,正则表达式的基础要点和特殊字符-CSDN博客
4章13节:R语言中Stringr扩展包进行字符串的查阅、大小转换和排序-CSDN博客
4章14节:R语言中字符串的处理,提取替换,分割连接和填充插值_r语言替换字符串-CSDN博客
4章15节:字符串处理,提取匹配的相关操作扩展,和Stringr包不同函数的重点介绍和举例-CSDN博客
4章16节:R 语言中日期时间数据的关键处理要点_r语言 时刻数据-CSDN博客
第五章:定量数据的统计描述
5章1节:用R语言进行定量数据的统计描述,文末有众数的自定义函数-CSDN博客
5章2节:离散趋势的描述,文末1个简单函数同时搞定20个结果-CSDN博客
5章3节:在R语言中,从实际应用的角度认识假设检验-CSDN博客
5章4节:从R语言的角度认识正态分布与正态性检验-CSDN博客
5章5节:认识方差和方差齐性检验(三种方法全覆盖)-CSDN博客
5章6节:R语言中的t检验,独立样本的t检验-CSDN博客
5章7节:单样本t检验和配对t检验-CSDN博客
5章8节:方差分析(ANOVA)及其应用-CSDN博客
5章9节:组间差异的非参数检验,Wilcoxon秩和检验和Kruskal-Wallis检验-CSDN博客
第六章:定性数据的统计描述
6章1节:定性数据的统计描述之列联表,文末有优势比计算介绍-CSDN博客
6章2节:认识birthwt数据集,EpiDisplay和Gmodels扩展包的应用-CSDN博客
6章3节:独立性检验,卡方检验,费希尔精确概率检验和Cochran-Mantel-Haenszel检验-CSDN博客
6章4节:相关关系和连续型变量的Pearson相关分析-CSDN博客
6章5节:分类型变量的Spearman相关分析,偏相关分析和相关图分析-CSDN博客
6章6节:相关图的GGally扩展包,和制表的Tableone扩展包-CSDN博客
第七章:R的传统绘图
7章1节:认识R的传统绘图系统,深度解析plot()函数和par()函数的使用-CSDN博客
7章2节:R基础绘图之散点图、直方图和概率密度图-CSDN博客
7章3节:R基础绘图之条形图和堆积条形图-CSDN博客
7章4节:饼图,箱线图和克利夫兰点图-CSDN博客
7章5节:散点矩阵图,与小提琴图、Cleveland 点图、马赛克图和等高图-CSDN博客
7章6节:用R进行图形的保存与导出,详细的高级图形输出,一文囊括大多数保存的各种问题,和如何批量保存不同情况的图形-CSDN博客
第八章:R的进阶绘图
8章1节:认识 ggplot2 扩展包,深度解析 qplot() 函数的使用-CSDN博客
8章2节:深度讲解 ggplot2 的绘图步骤,理解其核心逻辑, 和 ggplot()函数-CSDN博客
8章3节:用R来绘制医学地理图,文末有具体完整代码-CSDN博客
8章4节:维恩图的认识与应用,和使用UpSet图-CSDN博客
8章5节:用R绘制平行坐标图-CSDN博客
8章6节:雷达图及RadViz图-CSDN博客
8章7节:词云图,矩形树状图和三维散点图(更新20241024)-CSDN博客
8章8节:绘制自定义的高质量动态图和交互式动态图-CSDN博客
第九章:临床试验的统计
9章1节:初步认识临床试验(约7500字)-CSDN博客
9章2节:样本量估计的初步介绍-CSDN博客
9章3节:用R进行样本量估计的统计学参数-CSDN博客
9章4节:两组例数相同的均数比较的样本量估计和绘制功效曲线-CSDN博客
9章5节:两组的例数不等的均数比较的样本量估计和可视化-CSDN博客
9章6节:自身配对设计的均数比较临床试验的样本量估计和可视化-CSDN博客
9章7节:与总体均数比较的样本量估计和可视化-CSDN博客
9章8节: 两、三组试验组率比较的样本量估算和可视化-CSDN博客
9章9节:试验的随机分组认识,用R做简单随机化-CSDN博客
9章10节:用R实现分层随机化-CSDN博客
9章11节:用R实现区组随机化和置换区组随机化-CSDN博客
9章12节:动态随机化方法介绍,和用R绘制随机化卡片-CSDN博客
第十章:Meta分析攻略
10章1节:认识循证医学中的Meta分析,并予代码演示分析绘图-CSDN博客
10章2节:Meta分析的7大步骤的扼要解读-CSDN博客
10章3节:二分类变量的Meta分析模型,分析公式构建和结果解读-CSDN博客
10章4节:二分类变量的Meta分析模型,绘制漏斗图和应用剪补法,最后绘制和解读轮廓增强漏斗图-CSDN博客
10章5节:二分类变量的Meta分析模型,敏感性分析和亚组分析,绘制森林图-CSDN博客
10章6节:连续型变量的Meta分析和可视化分析全解-CSDN博客
10章7节:用R进行单个率Meta分析-CSDN博客
10章8节:用R进行网状Meta分析细解-CSDN博客
第十一章:主成分分析
11章1节:深度讲解用R进行主成分分析(上)-CSDN博客
11章2节:深度讲解用R进行主成分分析(中)-CSDN博客
11章3节:深度讲解用R进行主成分分析(下)-CSDN博客
11章4节:学会用R进行因子分析(上)-CSDN博客
11章5节:学会用R进行因子分析(中)-CSDN博客
11章6节:学会用R进行因子分析(下)-CSDN博客
第十二章:常见类型回归分析
12章1节:认识回归分析的历史背景及应用-CSDN博客
12章2节:构建一元和多元的线性回归模型-CSDN博客
12章3节:回归模型中哑变量的应用和设置-CSDN博客
12章4节:深度解读构建回归模型表达式的九个关键符号-CSDN博客
12章5节:深度剖析回归模型结果的相关函数-CSDN博客
12章6节:深度解读线性回归模型的绘图判断-CSDN博客
12章7节:构建因变量为分类变量的二分类Logistic回归模型-CSDN博客
12章8节:详解不同逻辑回归模型的比较,和如何进行变量优化-CSDN博客
12章9节:深度讲解有序多分类Logistic回归模型的分析-CSDN博客
12章10节:条件Logistic回归模型的分析-CSDN博客
第十三章:生存分析模型
13章1节:生存分析的基本概念和主要内容-CSDN博客
13章2节:用R进行生存率的描述与估计-CSDN博客
13章3节:生存分析的假设检验及可视化展示-CSDN博客
13章4节:认识比例风险模型和Cox比例风险模型,学会从协变量的调整选择最优模型-CSDN博客
13章5节:用逐步回归方法来选择模型协变量,比例风险假定的检验和森林图的绘制-CSDN博客
第十四章:匹配技术应用
14章1节:认识临床研究的匹配技术-CSDN博客
14章2节:匹配结果的可视化和匹配后新数据分析-CSDN博客
第十五章:判别和聚类分析
15章1节:医学研究中的判别分析和聚类分析-CSDN博客
15章2节:线性判别分析预测模型构建评估和可视化演示-CSDN博客
15章3节:二次判别分析技术的运用-CSDN博客
15章4节:K-Means聚类分析的运用,和改进算法的K-Means++-CSDN博客
15章5节:实现k-medoids聚类算法的PAM和CLARA方法-CSDN博客
15章6节:凝聚层次聚类和分裂层次聚类-CSDN博客
第十六章:机器学习入门
16章1节:机器学习和人工智能的基础知识-CSDN博客
16章2节:机器学习在临床预测中的应用场景,与临床预测模型的关键步骤解析-CSDN博客
16章3节:详析训练数据集、测试数据集和验证数据集及其划分策略-CSDN博客
16章4节:采用随机抽样法和等比抽样法对数据集进行二份及三份的划分-CSDN博客
16章5节:划分数据的多次随机抽样的Bootstrap法和加权随机抽样法-CSDN博客
16章6节:交叉验证概述与分类,R中K折交叉验证的详细解析-CSDN博客
16章7节:机器学习算法解读,与数值预测回归模型构建-CSDN博客
16章8节:朴素贝叶斯分类预测模型,从构建、解析到实战-CSDN博客
16章9节:认识决策树,构建CART算法的决策树模型-CSDN博客