当下已进入如火如荼的全民AI时代,最近体验了下midjourney,使用它的以图生图功能生成出来一套三国人物画像,和大家分享下使用心得。
使用midjourney生产图片依赖的工具和流程,大致如下:
- [1] 下载Discord App
- [2] 添加Midjourney Bot
- [3] 发送交互指令
- [4] 生成图片
是的官网,可以跟随网站引导提示完成使用体验。较为推荐和常见的使用姿势是在下载后添加来进行指令交互完成图片生成。
对于图片的生成主要是通过输入给midjourney一些prompt和参数来完成的。
- prompt 可以分为文本和图片两种类型,可以同时存在施加干预
- 参数 常用参数如指定图片比例、midjourney版本等
参考midjourney参数
以图生图的指令结构非常简单,如下:
url:上传到midjourney的图片url
prompt:影响midjourney的提示
param:midjouryney支持的参数配置
- [1] 上传图片:在本地选择一张图片上传到,支持、等通用格式,而等格式需要转换后方可上传
- [2] 复制图片地址:复制图片地址以备发送交互指令后使用
- [3] 发送交互指令:
- [4] 生成图片:根据出图体感做、、调整直到生成最满意的图
- 文字生图/以图生图的差别
在纯文字prompt的场景下,生成出来的图是一个几乎全未知的结果,需要进行大量的prompt调整才可能达到要求,在我进行纯文字prompt测试的case中几乎没有一张能够满足我的出图要求,这既有个人指令熟练度、覆盖度的原因,也有文字prompt相对局限性的问题,当下涌现了很多prompt网站,很多近乎成品的图和对应prompt被分享出来,但是拿着一致的prompt不一定拿到一致的图,存在很大的随机性、不稳定。
但是,以图生图的好处是可以通过一个已经存在的图像,让AI来识别,基于“模板”来进行二创,在我进行以图生图prompt的测试case中拿到满意出图效果。如果你的出发点是通过已有图片做较为稳定性的出图,比如给自己的照片做卡通形象,以图生图是很好的一种实现形式。
- 模型数据影响
对于出图描述体感上更符合欧美人群,而且亚裔人的描述并不是很符合现实,猜测和训练数据有一定关系,如果prompt不进行细节描述,描述很难符合预期。
总结一句话就是:喜欢的原型图 + 喜欢的风格 = 二创满意的图!
- 第一步: 在prompt分享网站找到自己喜欢的midjourney生成好的图片,如https://lexica.art/ ,大部分是支持关键字检索的,可以检索自己期望的风格、物品等描述。
- 第二步: 查看它的prompt进行参考,过于简短的prompt没有太大参考价值,主要参考哪些风格系描述,如cartoon(卡通)、painting(绘画)等,这里我想要给我找到的原型图卡通一点的形象,我抽取了prompt为作为我的出图效果设定。
- 第三步 对图片细节进行详尽描绘,具体可以参考如下人物特征描述。如果你对于细节要求不高,对出图效果比较佛系,可以简单描述核心特征即可。比如我在二创三国人物时候,会给简单prompt提示,如:
在使用过程中也遇到很多badcase,这里分享下:
- 颜色敏感
在一个测试case中发现,midjourney对颜色词汇非常敏感,但是也容易产生混乱,比如:
有时候会只识别到一种颜色,而且会把整个画面变得过于“色彩化”。
- 配合权重设置
权重设置可以参考上面的参数列表使用,它相当于是prompt的手动调优,让AI“重视”你的选择和倾向。比如,我在使用皮克斯这个风格的时候AI有时会”忽略“我的prompt,因此我会设置它的权重,增强这个prompt的存在感。
- 画“手”很难
AI对手的描述并不是很好,很多时候可能是“4指怪”、“6指怪”,握住东西,拉开一张弓等等,都是比较难的动作,需要反复调优prompt或者“碰运气”。
- 女性角色更容易
从我自身测试case来看,女性角色的以图生图刻画更贴近并且更容易接受一些,出图效果更符合预期,男性角色可能由于图画中夹杂了更多的人物外物品如刀、枪、弓等,原型图刻画张力更复杂有关系,偶尔会出现匪夷所思的效果。