本文思想来自下面这篇大佬的文章:
Juliuszh:一个框架看懂优化算法之异同 SGD/AdaGrad/Adam
https://zhuanlan.zhihu.com/p/32230623
主要是对深度学习各种优化器 (从SGD到AdamW) 使用统一的框架做一次整理,本文相比于链接从源代码的角度理解这些优化器的思路。
代码来自 PyTorch1.7.0 官方教程:
https://pytorch.org/docs/1.7.0/optim.html
首先我们来回顾一下各类优化算法。
深度学习优化算法经历了 SGD -> SGDM -> NAG ->AdaGrad -> AdaDelta -> Adam -> Nadam -> AdamW 这样的发展历程。Google一下就可以看到很多的教程文章,详细告诉你这些算法是如何一步一步演变而来的。在这里,我们换一个思路,用一个框架来梳理所有的优化算法,做一个更加高屋建瓴的对比。
- 统一框架:
首先定义:待优化参数: ,目标函数: ,初始学习率 。
而后,开始进行迭代优化。在每个epoch :
1 计算目标函数关于当前参数的梯度:
2 根据历史梯度计算一阶动量和二阶动量:
3 计算当前时刻的下降梯度:
4 根据下降梯度进行更新:
掌握了这个框架,你可以轻轻松松设计自己的优化算法。
我们拿着这个框架,来照一照各种玄乎其玄的优化算法的真身。步骤3, 4对于各个算法都是一致的,主要的差别就体现在1和2上,也就是计算一阶动量 和二阶动量 时采用不同的套路。当计算好二者之后,都是使用固定的学习率 与二者作用得到当前时刻的下降梯度 ,进而最后更新参数。
在所有优化器的代码里面有一些函数的作用是相通的:
共性的方法有:
- (param_group):把参数放进优化器中,这在 Fine-tune 预训练网络时很有用,因为可以使冻结层可训练并随着训练的进行添加到优化器中。
- (state_dict):把优化器的状态加载进去。
- ():返回优化器的状态,以dict的形式返回。
- (closure=None):优化一步参数。
- (set_to_none=False):把所有的梯度值设为0。
使用方法:
下面正式开始。
先来看SGD。SGD没有动量的概念,也就是说:
代入步骤3,可以看到下降梯度就是最简单的
SGD最大的缺点是下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。
为了抑制SGD的震荡,SGDM认为梯度下降过程可以加入惯性。下坡的时候,如果发现是陡坡,那就利用惯性跑的快一些。SGDM全称是SGD with momentum,在SGD基础上引入了一阶动量:
一阶动量是各个时刻梯度方向的指数移动平均值,约等于最近 个时刻的梯度向量和的平均值。
也就是说, 时刻的下降方向,不仅由当前点的梯度方向决定,而且由此前累积的下降方向决定。 的经验值为0.9,这就意味着下降方向主要是此前累积的下降方向,并略微偏向当前时刻的下降方向。想象高速公路上汽车转弯,在高速向前的同时略微偏向,急转弯可是要出事的。
SGD 还有一个问题是困在局部最优的沟壑里面震荡。想象一下你走到一个盆地,四周都是略高的小山,你觉得没有下坡的方向,那就只能待在这里了。可是如果你爬上高地,就会发现外面的世界还很广阔。因此,我们不能停留在当前位置去观察未来的方向,而要向前一步、多看一步、看远一些。
NAG全称Nesterov Accelerated Gradient,是在SGD、SGD-M的基础上的进一步改进,改进点在于步骤1。我们知道在时刻 的主要下降方向是由累积动量决定的,自己的梯度方向说了也不算,那与其看当前梯度方向,不如先看看如果跟着累积动量走了一步,那个时候再怎么走。因此,NAG在步骤1,不计算当前位置的梯度方向,而是计算如果按照累积动量走了一步,那个时候的下降方向:
然后用下一个点的梯度方向,与历史累积动量相结合,计算步骤2中当前时刻的累积动量。
定义优化器:
参数:
- params (iterable) – 优化器作用的模型参数。
- lr (float) – learning rate,相当于是统一框架中的 。
- momentum (float, optional) – 动量参数。(默认值:0)
- weight_decay (float, optional) – 权重衰减系数 weight decay (L2 penalty) (默认值:0)
- dampening (float, optional) – dampening for momentum (默认值:0)
- nesterov (bool, optional) – 允许 Nesterov momentum (默认值:False)
源码解读:
这里通过 d_p=p.grad 得到每个参数的梯度,也就是1式的 。
如果使用 weight_decay 的话,那么相当于目标函数加上 ,所以相当于是梯度相当于要再加上 ,所以使用了 d_p = d_p.add(p, alpha=weight_decay)。
通过 buf.mul_(momentum).add_(d_p, alpha=1 - dampening) 来计算动量,momentum参数 一般取0.9,就相当于是之前的动量buf乘以 ,再加上此次的梯度d_p乘以 。
如果不通过nesterov方式更新参数,那么3式中的 就相当于是上一步计算出的动量 了。如果通过nesterov方式更新参数,那么3式中的 就相当于 ,和不用nesterov方式相比,相差了
最后通过 p.add_(d_p, alpha=-group['lr']) 更新梯度,相当于是上面的 3 式。
此前我们都没有用到二阶动量。二阶动量的出现,才意味着“自适应学习率”优化算法时代的到来。SGD及其变种以同样的学习率更新每个参数,但深度神经网络往往包含大量的参数,这些参数并不是总会用得到(想想大规模的embedding)。对于经常更新的参数,我们已经积累了大量关于它的知识,不希望被单个样本影响太大,希望学习速率慢一些;对于偶尔更新的参数,我们了解的信息太少,希望能从每个偶然出现的样本身上多学一些,即学习速率大一些。
怎么样去度量历史更新频率呢?那就是二阶动量——该维度上,迄今为止所有梯度值的平方和:
我们再回顾一下步骤3中的下降梯度:
可以看出,此时实质上的学习率由 变成了 。一般为了避免分母为0,会在分母上加一个小的平滑项。因此 是恒大于0的,而且参数更新越频繁,二阶动量越大,学习率就越小。
这一方法在稀疏数据场景下表现非常好。但也存在一些问题:因为 是单调递增的,会使得学习率单调递减至0,可能会使得训练过程提前结束,即便后续还有数据也无法学到必要的知识。
定义优化器:
参数:
- params (iterable) – 优化器作用的模型参数。
- lr (float) – learning rate – 相当于是统一框架中的 。
- lr_decay(float,optional) – 学习率衰减 (默认值:0)
- weight_decay (float, optional) – 权重衰减系数 weight decay (L2 penalty) (默认值:0)
- eps(float,optional):防止分母为0的一个小数 (默认值:1e-10)
源码解读:
由于AdaGrad单调递减的学习率变化过于激进,我们考虑一个改变二阶动量计算方法的策略:不累积全部历史梯度,而只关注过去一段时间窗口的下降梯度。这也就是AdaDelta名称中Delta的来历。
修改的思路很简单。前面我们讲到,指数移动平均值大约就是过去一段时间的平均值,因此我们用这一方法来计算二阶累积动量:
接下来还是步骤3:
这就避免了二阶动量持续累积、导致训练过程提前结束的问题了。
定义优化器:
参数:
- params (iterable) – 优化器作用的模型参数。
- lr (float) – learning rate – 相当于是统一框架中的 。
- momentum (float, optional) – 动量参数。(默认值:0)。
- alpha(float,optional) – 平滑常数 (默认值:0.99)。
- centered(bool,optional) – if, compute the centered RMSProp, the gradient is normalized by an estimation of its variance,就是这一项是 True 的话就把方差使用梯度作归一化。
- weight_decay (float, optional) – 权重衰减系数 weight decay (L2 penalty) (默认值:0)
- eps(float,optional):防止分母为0的一个小数 (默认值:1e-10)
源码解读:
这里通过 grad = p.grad 得到每个参数的梯度,也就是1式的 。
如果使用 weight_decay 的话,那么相当于目标函数加上 ,所以相当于是梯度相当于要再加上 ,故使用了 grad = grad.add(p, alpha=group['weight_decay'])。
square_avg.mul_(alpha).addcmul_(grad, grad, value=1 - alpha) 对应10式,计算当前步的 。
centered 这一项是 False 的话直接 square_avg.sqrt().add_(group['eps']) 对 开根号。
centered 这一项是 True 的话就把方差使用梯度作归一化。最后通过 p.addcdiv_(grad, avg, value=-group['lr']) 更新梯度,相当于是上面的 3 式。
RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
定义优化器:
参数:
- params (iterable) – 优化器作用的模型参数。
- lr (float) – learning rate – 相当于是统一框架中的 。
- rho(float,optional) – 计算梯度平方的滑动平均超参数 (默认值:0.9)
- weight_decay (float, optional) – 权重衰减系数 weight decay (L2 penalty) (默认值:0)
- eps(float,optional):防止分母为0的一个小数 (默认值:1e-10)
源码解读:
这里通过 grad = p.grad 得到每个参数的梯度,也就是1式的 。
如果使用 weight_decay 的话,那么相当于目标函数加上 ,所以相当于是梯度相当于要再加上 ,故使用了 grad = grad.add(p, alpha=group['weight_decay'])。
square_avg.mul_(rho).addcmul_(grad, grad, value=1 - rho) 对应10式,计算当前步的 。std = square_avg.add(eps).sqrt_() 对 开根号。
最后通过 p.add_(delta, alpha=-group['lr']) 更新梯度,相当于是上面的 3 式。
delta 的分子项是 ,分母项是 开根号。acc_delta 是对 delta 的滑动平均。
谈到这里,Adam和Nadam的出现就很自然而然了——它们是前述方法的集大成者。我们看到,SGD-M在SGD基础上增加了一阶动量,AdaGrad和AdaDelta在SGD基础上增加了二阶动量。把一阶动量和二阶动量都用起来,就是Adam了——Adaptive + Momentum。
SGD的一阶动量:
加上AdaDelta的二阶动量:
优化算法里最常见的两个超参数 就都在这里了,前者控制一阶动量,后者控制二阶动量。
最后是Nadam。我们说Adam是集大成者,但它居然遗漏了Nesterov,这还能忍?必须给它加上,按照NAG的步骤1:
这就是Nesterov + Adam = Nadam了。
定义优化器:
参数:
- params (iterable) – 优化器作用的模型参数。
- lr (float) – learning rate – 相当于是统一框架中的 。
- betas(Tuple[float,float],optional) – coefficients used for computing running averages of gradient and its square ((默认值:(0.9, 0.999))
- weight_decay (float, optional) – 权重衰减系数 weight decay (L2 penalty) (默认值:0)
- eps(float,optional):防止分母为0的一个小数 (默认值:1e-10)
源码解读:
这里通过 grad = p.grad 得到每个参数的梯度,也就是1式的 。
如果使用 weight_decay 的话,那么相当于目标函数加上 ,所以相当于是梯度相当于要再加上 ,故使用了 grad = grad.add(p, alpha=group['weight_decay'])。
exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) 计算12式。
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2) 计算13式。
因为15式的缘故,要给分母除以 math**.**sqrt(bias_correction2)。
因为14式的缘故,要给分子除以 bias_correction1。
最后通过 p.addcdiv_(exp_avg, denom, value=-step_size) 更新梯度,相当于是上面的 3 式。
下图1所示为Adam的另一个改进版:AdamW。
简单来说,AdamW就是Adam优化器加上L2正则,来限制参数值不可太大,这一点属于机器学习入门知识了。以往的L2正则是直接加在损失函数上,比如这样子:加入正则,损失函数就会变成这样子:
所以在计算梯度 时要加上粉色的这一项。
但AdamW稍有不同,如下图所示,将正则加在了绿色位置。
图1:AdamW
至于为何这么做?直接摘录BERT里面的原话看看:
Just adding the square of the weights to the loss function is *not* the correct way of using L2 regularization/weight decay with Adam, since that will interact with the m and v parameters in strange ways. Instead we want to decay the weights in a manner that doesn't interact with the m/v parameters. This is equivalent to adding the square of the weights to the loss with plain (non-momentum) SGD. Add weight decay at the end (fixed version).
这段话意思是说,如果直接将L2正则加到loss上去,由于Adam优化器的后序操作,该正则项将会与和产生奇怪的作用。因而,AdamW选择将正则项加在了Adam的和等参数被计算完之后、在与学习率相乘之前,所以这也表明了weight_decay和正则虽目的一致、公式一致,但用法还是不同,二者有着明显的差别。以 PyTorch1.7.0 中的AdamW代码为例:
定义优化器:
参数:
- params (iterable) – 优化器作用的模型参数。
- lr (float) – learning rate – 相当于是统一框架中的 。
- betas(Tuple[float,float],optional) – coefficients used for computing running averages of gradient and its square ((默认值:(0.9, 0.999))
- weight_decay (float, optional) – 权重衰减系数 weight decay (L2 penalty) (默认值:0)
- eps(float,optional):防止分母为0的一个小数 (默认值:1e-10)
源码解读:
与 Adam 不一样的地方是:
Adam 如果使用 weight_decay 的话,那么相当于目标函数加上 ,所以相当于是梯度相当于要再加上 ,故使用了 grad = grad.add(p, alpha=group['weight_decay'])。