由上图可以看到,无论是硬件产生的信号,还是软件产生的信号,都会走到 act_set_astbsd() 进而唤醒收到信号的进程的某一个线程。这个机制就给我们在“自身进程内捕获 Crash” 提供了可能性。就是可以通过拦截 “UNIX信号” 或 “Mach异常” 来捕获崩溃。
而且这里还有个小知识,当我们拦截信号处理之后是可以让程序不崩溃而继续运行的,但是不建议这样做,因为程序已经处于异常不可知状态。
PLCrashReporter 和 KSCrash 两个开源库都提供了 2 种方式拦截异常,包括 “Mach异常拦截” 和 “UNIX信号拦截”。说到这里有人可能困惑了,看上图里面最终都会转换为 “UNIX信号”, 是不是代表我们只用监听 “UNIX 信号” 就够了呢?为什么还要拦截 Mach 异常呢?
有两个原因:
-
不是所有的 "Mach异常” 类型都映射到了 “UNIX信号”。 如 EXC_GUARD 。在苹果开源的 xnu 源码中可以看到这点。
-
“UNIX信号” 在崩溃线程回调,如果遇到 Stackoverflow 问题,已经没有条件(栈空间)再执行回调代码了。
那么,是不是我们只拦截 “Mach异常” 就够了呢?也不是,用户态的软件异常是直接走信号流程的,如果不拦截信号可能导致这部分 Crash 丢失。
附 “Mach异常” 与 “UNIX信号” 的转换关系代码,来自 xnu 中的 bsd/uxkern/ux_exception.c :
switch(exception) {case EXC_BAD_ACCESS: if (code == KERN_INVALID_ADDRESS) *ux_signal = SIGSEGV; else *ux_signal = SIGBUS; break;
case EXC_BAD_INSTRUCTION: *ux_signal = SIGILL; break;
case EXC_ARITHMETIC: *ux_signal = SIGFPE; break;
case EXC_EMULATION: *ux_signal = SIGEMT; break;
case EXC_SOFTWARE: switch (code) {
case EXC_UNIX_BAD_SYSCALL: *ux_signal = SIGSYS; break; case EXC_UNIX_BAD_PIPE: *ux_signal = SIGPIPE; break; case EXC_UNIX_ABORT: *ux_signal = SIGABRT; break; case EXC_SOFT_SIGNAL: *ux_signal = SIGKILL; break; } break;
case EXC_BREAKPOINT: *ux_signal = SIGTRAP; break;}
看到这里,有同学可能会说,还有 NSException 呢?我们都用 NSUncaughtExceptionHandler 来捕获异常 Crash 的。在前面就将 c++/ObjC 异常归类到了“软件异常” 类型,那是不是“捕获信号”就行了呢?为什么还要注册 NSUncaughtExceptionHandler 呢?是因为 CrashReporter 需要通过这个 handler 来获取异常相关信息和堆栈。
看懂 Crash 日志
我们这里说的 Crash 日志,是指 Apple Format 格式的 全堆栈 Crash 日志。
▐ Crash 头部信息
-
Incident Identifier: 每个 Crash 生成的唯一的 uuid.
-
CrashReporter Key: CrashReporter 的 uuid, 如果自己捕获日志,这个可以忽略。
-
Hardware Model: 机型
-
Process: 进程名和进程ID
-
Path: 进程的可执行文件路径
-
Identifier: Info.plist 中配置的 CFBundleIdentifier 值
-
Version: CFBundleVersion (CFBundleVersionShort) 即应用的Build号+版本号
-
Code Type: 机型的 CPU 架构,但是不是详细的架构名。比如 arm64e 在这里也是 ARM-64
-
Parent Process: 父进程和进程ID
-
Data/Time: Crash发生的具体时间。
-
Launch Time: 进程启动时间
-
OS Version: iOS 系统版本和 build号
-
Report Version: Crash日志格式的版本号,一般是 104。如果这个version偏高,用系统的symbolicatecrash命令不能符号化日志,一般如果看到是204, 改成104之后用symbolicatecrash就可以符号化了
Crash 异常码
在 Crash 头部信息之下, 会有个段记录了 Crash 异常码。类似下图:
这里我们应该关注:
-
Exception Type: 异常码,一般格式是 Mach异常码 ( UNIX 信号类型 )
-
Exception Subtype: 一般情况里面带的是 Mach异常的 subcode, 还有 Crash 相关地址信息。
-
Triggered by Thread: 发生Crash的线程,大部分情况到这个线程的堆栈里面去看 Crash 堆栈。
-
Application Specific Information: 如果是 Objc/c++ Exception 异常,这里是异常的信息,这个是定位异常的关键信息
-
Last Exception Backtrace: 抛出异常的代码堆栈, 如果是 Objc/c++ Exception 异常造成的 Crash,就看这个堆栈,Crashed Thread: 里的堆栈是 abort(),没有意义。
附异常码的解释, 非所有异常码,只是我们 Crash 中可能会看到的 :
Mach 异常
UNIX 信号
案例
EXC_BAD_ACCESS
SIGBUS
总线错误
1、内存地址对齐出错 2、试图执行没有执行权限的代码地址
SIGSEGV
段错误
1、访问未申请的虚拟内存地址
2、没有写权限的内存写入
EXC_BAD_INSTRUCTION
SIGILL
非法指令,即机器码指令不正确
1, iOS 上偶现的问题,遇到之后用户会连续闪退,直到应用二进制的缓存重新加载 或重启手机。此问题挺影响体验,但是报给苹果不认,因为苹果那边没有收集到,目前没有太好办法。因为 iOS 应用内无法对一篇内存同时获取 w+x 权限的,因此应用无法造成此类问题,所以判断是苹果的问题。
EXC_ARITHMETIC
SIGFPE
算术运算出错,比如除0错误
iOS 默认是不启用的,所以我们一般不会遇到
EXC_SOFTWARE (我们在 Crash 日志中一般不会看到这个类型,苹果的日志里会是 EXC_CRASH)
SIGSYS
系统调用异常
无
SIGPIPE
管道破裂
SIGABRT
abort() 发生的信号
SIGKILL
9毫米子弹,大杀特杀。进程内无法拦截
EXC_BREAKPOINT
SIGTRAP
由断点指令或其它trap指令产生
EXC_GUARD
无
文件句柄错误
EXC_RESOURCE
无
资源受限
▐ Crash 堆栈
下面一张图介绍了 Crash 堆栈中每个段的含义:
▐ Thread State
Thread State 中记录了 Crash 线程的寄存器的值,对于一些问题的定位是有一定帮助的。
比如通过 fp, sp 的值配合 异常码 中的地址判断是否是栈溢出问题。但是大部分情况下,这块内容可以提供的帮助都比较小,因为都是单纯的数值,而不是其代表的:意义。在这一点上, KSCrash 提供了分析功能, 可以对寄存器内值的意义进一步分析,比如分析是不是一个 ObjC 的对象,分析string的内容,可以帮助我们对Crash进一步分析,因为 Crash 现场如果能拿到更多的信息,对于定位 Crash 的帮助可能是很大的,这个功能是很赞的。
一个简单的 Case: 当 ObjC 对象野指针时,调用它的任何方法都会 Crash, 而往往野指针问题不太容易快速定位野的对象是什么, 但是我们可以通过分析 x1 的值,也就是最后调用它的 @selector 再结合代码就很容易定位出野掉的对象是谁了。
▐ Binary Images
Binary Images 中记录了进程加载的所有镜像列表, 这块内容是符号化 Crash 日志的关键,符号化的原理就是通过这里的镜像 UUID 来找到对应镜像的符号化文件从而进行对堆栈的符号化工作的。
镜像起始地址 镜像结束地址 镜像名 架构 镜像uuid 镜像完整路径0x1815b8000 - 0x181c73fff libobjc.A.dylib arm64 <5f420cdc6f593721a9cf0464bd87e1a2> /usr/lib/libobjc.A.dylib
读这段内容在 Crash 定位时也是有帮助的,比如:
-
我们可以根据是否有加载越狱的动态库来判断设备是否越狱
-
有些越狱设备会更改 iOS 系统版本号,也可以通过 uuid 来判断是否是有此种行为。
Crash 分析方法
在了解了上面基本知识后,我们已经具备一定的定位 Crash 的能力了。然而光有理论知识,也还要有实战工具。
▐ 符号化
关于堆栈符号化的文章可以说是很多了,但是既然叫攻略,这里还是讲一下吧。
- Xcode 自动符号化
苹果收集的日志,Xcode会自动帮我们符号化,如果你没有发布包,比如是别人电脑打包的发布包,或者是一些平台上打的包,只需要你把 xcarchive 拷贝到 $HOME/Library/Developer/Xcode/Archives 目录下之后,Xcode 就可以自动帮你符号化了。
- 手动符号化之 symbolicatecrash
Xcode 自带了一个命令行工具 symbolicatecrash , 在 /Applications/Xcode.app/Contents/SharedFrameworks/DVTFoundation.framework/Versions/A/Resources/symbolicatecrash , 这个工具可以帮助我们将整个 Crash 日志符号化:
使用 symbolicatecrash ,如果要符号化系统库的堆栈的话,需要有对应系统库的符号表放到 $HOME/Library/Developer/Xcode/iOS DeviceSupport 目录下面。符号表的获取可以通过插入对应系统版本的手机,或者从别人那拷贝获取。
- atos 单行符号化
在了解了 3.3 中的堆栈的信息后,我们也可以使用 atos 命令来对 单行或多行 的堆栈进行符号化操作。
使用方法:
atos -o [镜像的DWAF文件地址] -l [镜像的起始地址] [堆栈内存地址1] [堆栈内存地址2] …
▐ 汇编定位法
因为 iOS 上的 Native 代码都会被编译为机器码,且 Crash 堆栈中的很多信息其实是二进制上的内容,哪怕我们符号化了,但是经过编译器的翻译,有时候也无法通过符号化之后匹配到的代码行来定位最精确的原因。因为一行源代码可能包含很多逻辑而被编译为大段汇编,或者编译优化将多行代码合并优化等操作。
所以,有时候 Crash 定位就需要我们进阶版的 汇编定位法 。当然要学习汇编定位法可能需要一定的基础知识,比如看懂一些基础的汇编指令,可以通过学习和练习来提高,推荐一下一篇旧文: https://blog.cnbluebox.com/blog/2017/07/24/arm64-start/
汇编定位法,还需要一个反汇编的工具。
-
推荐使用 Hopper Disassembler 工具,这是个收费工具
-
将二进制文件拖进工具就可以了
-
也可以用 mac 自带的 otool 命令
-
otool -tV 二进制文件
-
Xcode 本身自带汇编调试
-
Xcode -> Debug -> Debug Workflow -> Always Show Disassmbly
Tips: 二进制就是我们工程编译的可执行文件、动态库。系统库的二进制可以在 $HOME/Library/Developer/Xcode/iOS DeviceSupport/ 中找到。dylib 在 Symbols/usr/lib 目录 ,动态库在 Symbols/System/Library/Frameworks 目录。
工具准备好了之后,怎么定位到具体位置呢,还是回到 3.3 节中的图,“代码在镜像中的偏移” 我们就根据这个信息进行查找就可以找到对应的汇编行了。
符号化的堆栈,无法直接看到“代码在镜像中的偏移”,我们可以自己减一下就行了。
一个例子:
- Crash堆栈
- 找到 VideoToolbox 的镜像起始地址
- 找到 VideoToolbox 的镜像,拖到 Hopper
- 算出“代码偏移”
因为 VideoToolbox 是系统库,放在 dyld_shared_cache 里面的,所以它镜像的文件地址也不是 0x0, 所以这里计算时候要加上 0x1848a2000, 我们自己打的动态库一般不存在这个。
- 找到对应的代码行
注意,这里 0x184900618 虽然是 orr 这一行,但其实是 0x184900614 这一行,因为这是 iOS 堆栈采集的原理所决定的(取lr),除了 frame 0 的堆栈地址是最后崩溃的地址,frame 序号 大于0的地址都是实际地址的下一行。
上述知识点,囊括了目前互联网企业的主流应用技术以及能让你成为“香饽饽”的高级架构知识,每个笔记里面几乎都带有实战内容。
很多人担心学了容易忘,这里教你一个方法,那就是重复学习。
打个比方,假如你正在学习 spring 注解,突然发现了一个注解@Aspect,不知道干什么用的,你可能会去查看源码或者通过博客学习,花了半小时终于弄懂了,下次又看到@Aspect 了,你有点郁闷了,上次好像在哪哪哪学习,你快速打开网页花了五分钟又学会了。
从半小时和五分钟的对比中可以发现多学一次就离真正掌握知识又近了一步。
人的本性就是容易遗忘,只有不断加深印象、重复学习才能真正掌握,所以很多书我都是推荐大家多看几遍。哪有那么多天才,他只是比你多看了几遍书。
这一行,但其实是 0x184900614 这一行,因为这是 iOS 堆栈采集的原理所决定的(取lr),除了 frame 0 的堆栈地址是最后崩溃的地址,frame 序号 大于0的地址都是实际地址的下一行。
上述知识点,囊括了目前互联网企业的主流应用技术以及能让你成为“香饽饽”的高级架构知识,每个笔记里面几乎都带有实战内容。
很多人担心学了容易忘,这里教你一个方法,那就是重复学习。
打个比方,假如你正在学习 spring 注解,突然发现了一个注解@Aspect,不知道干什么用的,你可能会去查看源码或者通过博客学习,花了半小时终于弄懂了,下次又看到@Aspect 了,你有点郁闷了,上次好像在哪哪哪学习,你快速打开网页花了五分钟又学会了。
从半小时和五分钟的对比中可以发现多学一次就离真正掌握知识又近了一步。
[外链图片转存中…(img-5oqnZ13S-1714301471803)]
人的本性就是容易遗忘,只有不断加深印象、重复学习才能真正掌握,所以很多书我都是推荐大家多看几遍。哪有那么多天才,他只是比你多看了几遍书。