人人都能玩得起AI机器人,HuggingFace开源低成本解决方案

   日期:2024-12-29    作者:rqzhengwanggs 移动:http://oml01z.riyuangf.com/mobile/quote/81008.html

新智元报道

人人都能玩得起AI机器人,HuggingFace开源低成本解决方案

编辑:alan

【新智元导读】近日,HuggingFace开源了低成本AI机器人LeRobot,并指导大家从头开始构建AI控制的机器人,包括组装、配置到训练控制机器人的神经网络。

当前的AI机器人,已经可以上蹿下跳后空翻、再接闪电五连鞭,代替人类承担各种工作。

哪怕是当大号手办,咱也想整一个玩玩。

但无奈目前大多公司还在研发阶段,少数能量产的又有亿点小贵。

当然了,小编相信AI和机器人最终会走进千家万户。

官方开源了全部的硬件和软件,包括训练和控制程序、AI模型、SolidWorks文件等。

LeRobot还计划在未来开发更具性价比的Moss v1版本,定价仅为150美元。

-相当于早期PC的AR/VR

-相当于早期个人电脑的机器人

通过更换直流转换器,Koch v1.1无需使用烙铁进行组装,也无需手动调节电压转换器。

另外,如果需要平替或者升级伺服电机的话,记得修改控制程序。

首先安装Koch v1.1所需的依赖:

pip install -e ".[koch]"

通过以下命令进行电机的配置和校准:

python lerobot/scripts/control_robot.py teleoperate

--robot-path lerobot/configs/robot/koch.yaml

--robot-overrides '~cameras' # do not instantiate the cameras

程序实例化一个类来调用SDK操作电机(port改为自己设备上检测到的端口):

DynamixelMotorsBus(port="/dev/tty.usbmodem575E0031751")

接下来配置每个电机的索引(相当于在总线上控制时的地址):

follower_arm = DynamixelMotorsBus(

port=follower_port,

motors={

# name: (index, model)"shoulder_pan": (1, "xl430-w250"),

"shoulder_lift": (2, "xl430-w250"),

"elbow_flex": (3, "xl330-m288"),

"wrist_flex": (4, "xl330-m288"),

"wrist_roll": (5, "xl330-m288"),

"gripper": (6, "xl330-m288"),

},

)

DynamixelMotorsBus会自动检测当前电机索引,如果电机中保存的索引与配置文件中不匹配,会触发一个配置过程,需要拔掉电机的电源,按顺序重新连接电机。

读写测试

运行以下代码:

leader_pos = leader_arm.read("Present_Position")

follower_pos = follower_arm.read("Present_Position")

print(leader_pos)

print(follower_pos)

配置成功后可以得到所有12个电机的当前位置:

array([2054, 523, 3071, 1831, 3049, 2441], dtype=int32)

array([2003, 1601, 56, 2152, 3101, 2283], dtype=int32)

校准

——温馨提示:记得不要在Torque_Enable的情况下硬掰。

开玩!

准备就绪,下面可以开始控制机械臂了,比如让从动臂模仿引导臂,设置采样频率200Hz,操作30秒:

import tqdm

seconds = 30

frequency = 200

for _ in tqdm.tqdm(range(seconds*frequency)):

leader_pos = robot.leader_arms["main"].read("Present_Position")

robot.follower_arms["main"].write("Goal_Position", leader_pos)

——是不是很简单?

那么由此可知,训练机械臂模仿人类的原理就是,在从动臂模仿引导臂的同时,加上一个摄像头的实时画面,

在模仿(训练)的过程中,模型收集了手臂位置和对应的图像数据,之后(推理)就可以根据当前摄像头看到的画面来预测各个电机需要到达的角度。

加入摄像头

项目使用opencv2库来操作camera,以下代码同时配置了机械臂和摄像头:

robot = KochRobot(

leader_arms={"main": leader_arm},

follower_arms={"main": follower_arm},

calibration_path=".cache/calibration/koch.pkl",

cameras={

"laptop": OpenCVCamera(0, fps=30, width=640, height=480),

"phone": OpenCVCamera(1, fps=30, width=640, height=480),

},

)

robot.connect()

使用下面的代码尝试以60 fps录制视频30秒(busy_wait负责控制帧率):

import time

from lerobot.scripts.control_robot import busy_wait

record_time_s = 30

fps = 60

states = []

actions = []

for _ in range(record_time_s * fps):

start_time = time.perf_counter()

observation, action = robot.teleop_step(record_data=True)

states.append(observation["observation.state"])

actions.append(action["action"])

dt_s = time.perf_counter() - start_time

busy_wait(1 / fps - dt_s)

摄像头拍摄的图像帧会以线程的形式保存在磁盘上,并在录制结束时编码为视频。

也可以将视频流显示在窗口中,以方便验证。

还可以使用命令行参数设置数据记录流程,包括录制开始前、录制过程和录制结束后停留的时间。

可视化

python lerobot/scripts/visualize_dataset_html.py

--root data

--repo-id ${HF_USER}/koch_test

一旦您熟悉了数据记录,就可以创建更大的数据集进行训练。一个好的开始任务是在不同位置抓取一个物体并将其放入箱子中。

建议至少录制50集,每个地点10集。在整个录制过程中保持摄像机固定并保持一致的抓取行为。

实现可靠的抓取性能后,您可以开始在数据收集过程中引入更多变化,例如额外的抓取位置、不同的抓取技术以及改变相机位置。

避免过快地添加太多变化,因为这可能会影响您的结果。

参考资料:


特别提示:本信息由相关用户自行提供,真实性未证实,仅供参考。请谨慎采用,风险自负。


举报收藏 0评论 0
0相关评论
相关最新动态
推荐最新动态
点击排行
{
网站首页  |  关于我们  |  联系方式  |  使用协议  |  隐私政策  |  版权隐私  |  网站地图  |  排名推广  |  广告服务  |  积分换礼  |  网站留言  |  RSS订阅  |  违规举报  |  鄂ICP备2020018471号